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The database is an early hit on the Internet
search database number fields. It pays close
attention to the ramification of primes, and
is focused on completeness results in degrees
≤ 11. An overall goal is to get a practical feel
for the set of all number fields by looking very
systematically at first examples.

Our paper describing the database and its in-
teractions with theoretical issues is a later hit
and at arXiv:1404.0266.

This talk follows the section structure of the
paper. On most slides, we pause to actually
query the database.



2. Using the database.

Asking for quartic fields with |D| ≤ 250 returns
the complete list of six fields:

Results below are proven complete
rd(K) grd(K) D h G Polynomial

3.29 6.24 −232131 1 D4 x4 − x3 − x2 + x+ 1
3.34 3.34 −253 1 C4 x4 − x3 + x2 − x+ 1
3.46 3.46 −22432 1 V4 x4 − x2 + 1
3.71 6.03 −23371 1 D4 x4 − x3 + 2x+ 1
3.87 3.87 −23252 1 V4 x4 − x3 + 2x2 + x+ 1
3.89 15.13 −22291 1 S4 x4 − x+ 1

The −s in D indicates s complex places.

Asking for quartic fields with discriminant −∗2∗3∗
returns all 62 fields.

Clicking on a prime p in e.g. D = −12633 for
K = Q[x]/(x4 − 3x2 + 3) links into our earlier
local field database and returns a thorough de-
scription of the completion Kp.

Clicking on e.g. grd = 6.45 gives details be-
hind the Galois Root Discriminant, i.e. the root
discriminant of the Galois closure.



4. Summarizing Tables. The paper has one
table for each degree ≤ 11. The sextic table:

Degree 6
T G {2,3} {2,5} {3,5} {2,3,5} rd(K) grd(K) |K[G,Ω]| Tot
1 6 7 0 3 15 5.06 5.06 399 5291
2 S3 8 1 5 31 4.80 4.80 610 8353
3 D6 48 6 10 434 4.93 8.06 3590 147965
4 A4 1 0 0 1 7.32 10.35 59 1357
5 3 o 2 8 0 5 31 4.62 10.06 254 2169
6 2 o 3 7 0 0 15 5.61 12.31 243 62484
7 S+

4 22 3 1 143 5.69 13.56 527 242007
8 S4 22 3 1 143 6.63 13.56 527 18738
9 S2

3 22 0 4 375 7.89 15.53 445 9721
10 32 : 4 4 0 2 44 8.98 23.57 34 396
11 2 o S3 132 18 2 2002 4.65 16.13 2196 323148
12 PSL2(5) 0 5 6 62 8.12 18.70 78 275
13 32 : D4 50 0 0 624 4.76 21.76 274 27049
14 PGL2(5) 5 38 22 1353 11.01 24.18 192 11519
15 A6 8 2 4 540 8.12 31.66 10 670
16 S6 54 30 42 8334 4.95 33.50 26 21594

Regular type indicates a completeness result.
Thus for S6 sextic fields:
There are exactly 54 ramified within {2,3} and
at least 8334 ramified within {2,3,5}. The
smallest rd is 147311/6 ≈ 4.95 while the small-
est grd is 29/434/552/3 ≈ 33.50. There are 26
fields with grd ≤ Ω = 8πeγ ≈ 44.76 and cur-
rently 21594 fields overall on the database.



5. S5 quintics with discriminant −∗2∗3∗5∗7∗.

There are 11279 of them (determined by a

huge search!).

The distribution of these fields by discriminant

reflects the distribution of local algebras in ac-

cordance with general mass heuristic principles

(Bhargava, Malle).

For example, the total mass of quintic 2-adic

algebras of discriminant 2a is on the second

row:

a 0 1 2 3 4 5 6 7 8 9 10 11
/Q2 1 2 2 5 4 6 4 4 4 8
/Q 205 468 416 1327 1081 1597 1260 1233 1171 2521

Queries give the numbers on the third row of

quintic S5 fields with discriminants −∗2a3∗5∗7∗.



6. Low degree nonsolvable fields with dis-

criminant −∗p∗q∗.

The case of septics (and some octics) illus-

trates the boundary of computational feasibil-

ity:

SL3(2) and PGL2(7)
2 3 5 7 11 13

2 • 4 51
3 0 • 28
5 0 0 • 4
7 44 12 4 • 4 6

11 4 0 6 •
13 0 0 •

A7 and S7

2 3 5 7 11 13
2 • 10 24 55 0 0
3 0 • 14 44 2
5 2 3 • 18
7 7 5 • 5

11 0 0 1 • 0
13 0 0 •

Queries for −∗p∗q∗ septics give more details

(Note: group-theoretic information is available

by clicking).



7. Nilpotent octic fields with odd discrim-
inant −∗p∗q∗.

For each set {p, q} of two odd primes, there is
a group Gp,q = 〈τp, τq〉 governing number fields
with discriminant −∗p∗q∗ and Galois group of
order 2∗. The groups Gp,q have been studied
by Boston, Ellenberg, and others. Some are
finite, others are infinite.

The database has all cases with p, q < 250.
There are 23 possibilities for the quotient of
Gp,q governing octic fields. In the represen-
tative case with p ≡ q ≡ 5 (8), there are 4
possibilities:

Number of fields with a given Galois group 8Tj
p q 1 2 4 5 6 7 8 10 16 17 19 20 21 27 28 30 Freq
5 13 3 2 1/32
5 29 3 3 1 6 8 4 2 2 4 4 1/128

13 53 3 3 1 2 2 6 8 12 6 6 12 12 16 1/128
13 29 3 3 1 6 2 12 4 2 2 2 2 4 1/64

Queries show that e.g. {5,181} is in the case
represented by {13,53} at our current octic
level. But they also show that 2-primary parts
of class numbers disagree, so G13,53 6= G5,181.



8. Nilpotent octic fields with discriminant
−∗2∗q∗.

Cases with p = 2 are greatly complicated by
the fact that ramification at 2 is wild. The
database covers q < 2500 where there are 13
possibilities for the quotient of Gp,q governing
octic fields. The two cases with the smallest
number of fields are q ≡ 3,5 (8), where G2,q in
its entirety is known (Koch) to be the pro-2
free product D∞ ∗Dq.

|G| = 8 |G| = 16 |G| = 32 21 |G| = 64
20 282 312

q 1 2 3 4 5 62 7 8 94 102 113 152 162 172 188 192 264 272 296 304 358 Tot
Q2 24 18 1 18 6 16 36 36 9 12 16 38 12 48 4 24 24 48 16 24 48 1449
3 4 6 1 14 2 10 6 22 7 4 6 21 4 8 3 4 16 8 8 4 21 579
5 8 18 1 12 0 10 20 10 6 12 6 21 12 36 1 12 6 24 4 2 9 621

It is also known (Koch) that G2,q coincides
with its 2-decomposition group when q ≡ 3,5 (8).
From the database, we observe that the 579
or 621 octic 2-adic fields are in fact indepen-
dent of q! Some of this may be seen directly
by queries (with q ≡ 3 (8) and ord2(D) = 16 a
manageably small case).



9. Minimal nonsolvable fields with grd ≤ Ω.
Fields with small grd are of particular note:
they interact interestingly with Serre-Odlyzko
GRH analytic bounds and corresponding auto-
morphic forms can often be found. All grd’s
2α3β and 2α5β coming from minimal nonsolv-
able fields on the n ≤ 11 part of the database:
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It is hard to keep grd’s under Ω. For example,

f1(x) = x5 − 10x3 − 20x2 + 110x+ 116,

f2(x) = x5 + 10x3 − 10x2 + 35x− 18,

f3(x) = x5 + 10x3 − 40x2 + 60x− 32

all have G = A5 and grd = 23/258/5 ≈ 37.14.
But their pairwise products all have grd >> Ω.



10. General nonsolvable fields with grd ≤
Ω. Up through now, we have been mainly
counting collections of number fields with given
properties. But individual number fields can be
of interest! For example, searching for the grd
18311/2 ≈ 42.79 returns five interrelated poly-
nomials, including

f1(x) = x11 − 2x10 + x9 − 5x8 + 13x7

−9x6 + x5 − 8x4 + 9x3 − 3x2 − 2x+ 1,

f2(x) = x19 − 6x18 + 18x17 − 39x16 + 73x15

−200x14 + 265x13 + 305x12 − 931x11

+1905x10 − 5214x9 + 10284x8

−13343x7 + 12719x6 − 8662x5

+4443x4 − 1732x3 + 614x2 − 152x+ 39.

The splitting field K1 is by far the least rami-
fied PSL2(F11) field known. The splitting field
K2 has Galois group D19, being the Hilbert
class field of Q(

√
−1831). The compositum

K1K2 has degree 660 · 38 = 25080, which is
quite large for its grd of ≈ 42.79. One can
build other similarly remarkable fields by care-
fully combining fields on the database.


